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Charge transport accompanied by heat transfer through a single-level quantum dot coupled to ferromagnetic
leads with noncollinear magnetic moments is studied theoretically in the linear and nonlinear transport regimes.
Calculations performed in the framework of nonequilibrium Green’s function formalism and the equation of
motion method reveal a significant influence of Coulomb blockade on thermal transport processes. The ther-
mopower S and thermal efficiency described by the figure of merit ZT depend on magnetic configuration of the
system. Two physically different situations are considered; one appears when spin accumulation is excluded
and the second one when spin accumulation is relevant. In the latter case we also calculate the corresponding
spin thermopower. Apart from this, magnetothermopower is introduced and discussed.
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I. INTRODUCTION

Electronic transport in nanostructures has been exten-
sively studied in the last two decades. Recently, there is ad-
ditionally a great interest in the charge transport accompa-
nied by the energy �heat� transfer.1–14 This applies to
nanostructures of various types, including also quantum dots,
on which we focus in this paper. Thermopower, quantita-
tively described by the Seebeck coefficient S and defined as
the ratio of the voltage drop �V generated by the temperature
difference �T, S=�V /�T, has been investigated experimen-
tally and theoretically for quantum dots and molecules in the
Coulomb blockade15–21 and Kondo regimes.22–27 Though ap-
plications of the thermal effects in nanoelectronic devices is
still a matter of perspectives, the research of novel transport
phenomena is of fundamental interest. Due to level quanti-
zation and Coulomb blockade effects, the situation in nano-
scopic systems is different from that in bulk materials. Both
charging energy and quantum confinement have been shown
to strongly affect thermoelectric properties. Some novel ef-
fects such as oscillations of the thermopower S �Refs. 15 and
16� and oscillations of the thermal conductance � �Refs. 20,
21, and 28� with the gate voltage have been observed in
transport through Coulomb islands. Apart from this, addi-
tional fine structure due to discrete levels was found for
small quantum dots �QDs�.17 Moreover, thermopower also
appears to be a very sensitive tool to detect the Kondo cor-
relations which lead to logarithmic dependence of the ther-
moelectric coefficients on temperature and also to sign rever-
sal of S.22 It is also worth noting that experiments performed
on QDs in the Kondo regime reveal a strong influence of
spin correlations on the thermopower.26

Coulomb interactions in QD-based single-electron de-
vices have a significant influence on thermoelectric transport
coefficients, and lead to strong violation of the Wiedeman-
Franz law.20,28 The Lorentz ratio, L=� /GT, with G denoting
the electric conductance and T standing for temperature,
strongly depends on the gate voltage and can be significantly
different from the Lorentz number �k2 /3e2 typical for bulk

systems, where k is the Boltzmann constant and e stands for
the electron charge. Violation of the Wiedeman-Franz law
was also observed for QDs in the Kondo regime.24 As shown
by Murphy et al.,29 violation of the Wiedeman-Franz law is
the main mechanism of an enhanced thermoelectric effi-
ciency in molecular junctions, which can be important for
possible applications in energy conversion devices. Addi-
tional advantage of molecular systems is that the correspond-
ing phonon contributions to thermal conductance may be
small.1,30 Moreover, a giant thermopower was found in
single-molecular systems.30 Calculations based on the
density-functional formalism indicate that the thermoelectric
efficiency of molecules which exhibit the Fano resonance
can be significantly enhanced. It is also worth to note, that
the influence of the Kondo effect and quantum interference
on thermoelectric properties in a QD side coupled to a quan-
tum wire was studied by Yoshida et al.27 in terms of the
numerical renormalization group.

There is currently an increasing interest in the interplay of
spin effects and heat transport. The spin Seebeck effect has
been observed experimentally,31 where also spin voltage gen-
erated by a temperature gradient in metallic magnets has
been measured. It is expected that this effect may find appli-
cations in magnetoelectronic devices as a source of spin cur-
rent. We also note, that the giant magnetothermoelectric
power was observed in multilayered nanopillars,32 while
thermally excited spin currents were investigated in metals
with embedded ferromagnetic clusters.33,34 Quite recently,
Hatami et al.35 have studied Peltier and Seebeck effects in
magnetic multilayers within the finite-element theory. They
showed that thermoelectric effects significantly depend on
relative alignment of magnetizations in neighboring mag-
netic layers. Thermoelectric effects in a single-level QD
coupled to ferromagnetic leads have been discussed recently
by Dubi and Di Ventra36 in the sequential tunneling regime
in terms of the rate equations.

Here, we present the approach to spin-dependent thermo-
electric phenomena in transport through QDs using the non-
equilibrium Green’s function formalism. We study the sys-
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tem composed of a QD attached to ferromagnetic leads with
noncollinear magnetic moments and consider the interplay of
magnetic and thermoelectric properties in the Coulomb �and
quantum� blockade regime. First, in Secs. II and III we de-
scribe the basic thermoelectric effects and the model of a
quantum dot coupled to external ferromagnetic leads, respec-
tively. In Sec. IV we present the corresponding numerical
results. Then, in Sec. V we introduce spin thermopower.
Nonlinear thermopower is briefly discussed in Sec. VI. Final
conclusions and summary are in Sec. VII.

II. THERMOELECTRIC PHENOMENA

The system to be considered consists of a small �single-
level� QD attached to external ferromagnetic electrodes. The
leads in equilibrium are described by the chemical potential
� and temperature T. We assume now that the chemical po-
tential in nonequilibrium situation �in a biased system� is
independent of electron spin. Though the spin dependence of
tunneling processes through the dot may generally lead to
spin accumulation �spin splitting of the chemical potential�
in the electrodes, we assume the size of the electrodes is
sufficiently large and spin-relaxation time sufficiently short
to neglect this effect. In Sec. V, however, we will relax this
assumption.

Let us now recall some basic formulas describing thermo-
electric effects. Assume voltage �V and temperature differ-
ence �T between the two leads. The linear response theory
gives then the following formulas for the charge current I
and heat �energy� current IQ flowing through the system:37

I = eL0�� +
e

T
L1�T , �1�

IQ = − L1�� −
1

T
L2�T �2�

with ��=e�V. Here, Ln �n=0,1 ,2� are defined as

Ln = −
1

�
Tr� dE

2�
�E − ��nT�E�

� f

�E
, �3�

where f�E� is the Fermi-Dirac distribution function, and
T�E� describes transmission probability through the dot. The
latter quantity is a matrix in the spin space.

The thermopower S is usually calculated as the voltage
drop induced by the temperature difference under the condi-
tion that the charge current vanishes, I=0. This leads to the
following well-known formula for S:

S =
�V

�T
= −

1

eT

L1

L0
. �4�

From Eqs. �1� and �2� follows that the electrical conductance
G and thermal conductance � are given by:37

G = e2L0 �5�

and

� =
1

T
�L2 −

L1
2

L0
� . �6�

In turn, the thermoelectric efficiency of the system is de-
scribed by the dimensionless figure of merit,

ZT =
GS2T

�
, �7�

defined in terms of measurable coefficients S, G, and �. To
calculate these coefficients one needs to find the transmission
matrix T�E�, which includes the relevant information on
transport properties of the system considered. Therefore, we
calculate now T�E� for a QD attached to ferromagnetic
leads.

III. MODEL OF A QUANTUM DOT COUPLED
TO EXTERNAL FERROMAGNETIC LEADS

A quantum dot coupled to ferromagnetic leads can be de-
scribed by Hamiltonian of the general form, H=HD+He
+HT. The term HD corresponds to the single-level dot and
takes the form

HD = �
�

�0d�
+d� + Ud↑

+d↑d↓
+d↓, �8�

where �0 is the dot energy level, and d�
+�d�� is the creation

�annihilation� operator of an electron with spin �= ↑ �↓ �.
The intradot Coulomb interaction is described by the
last term in HD, with U denoting the Hubbard parameter.
The second term in H is the lead Hamiltonian, He
=��=L,R�ks�k�sck�s

+ ck�s, which describes noninteracting elec-
trons with the wave vectors k and spin s=+�−� in the left �L�
and right �R� electrodes. We remind that the spin orientation
in the dot’s �global� quantization system is denoted by �
= ↑ �↓ �, while in the local reference frames �determined by
local magnetization orientation� of the leads as s=+�−� for
spin-majority �spin-minority� electrons. The last term in
Hamiltonian H, HT=�k��s��Vk�

s� ck�s
+ d�+H.c.�, describes

tunneling processes between the dot and leads, with

VkL = �TkL
+ 0

0 TkL
− �, VkR = � TkR

+ cos�	/2� TkR
+ sin�	/2�

− TkR
− sin�	/2� TkR

− cos�	/2�
� .

�9�

Here, 	 is the angle between magnetic moments of the two
leads, and for the quantum dot we assumed the same quan-
tization axis as in the left electrode.38

In the following, coupling of the dot to external leads will
be described by the parameters expressed in the matrix form
as:

�L = �
↑
L 0

0 
↓
L �, �R = � 
↑

R 
↑↓
R


↓↑
R 
↓

R � , �10�

where the following notation has been introduced: 
↑
L=
+

L,

↓

L=
−
L, 
↑

R=
+
R cos2�	 /2�+
−

R sin2�	 /2�, 
↓
R=
+

R sin2�	 /2�
+
−

R cos2�	 /2�, and 
↑↓
R =
↓↑

R = 1
2 �
+

R−
−
R�sin 	. Here,


s
�=�k�Tk�

s �2��E−�k�s�, and we write 
s
� in the form 
s

�

=
�1+sp�, where 
 is treated as a parameter independent of
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energy �the same for both electrodes� and p denotes the leads
spin polarization.

To determine the transmission coefficient T�E�, we use
the nonequilibrium Green’s function formalism based on
the equation of motion method. Within the standard
Hartree-Fock approximation, which is justified out of the
Kondo regime, the energy-dependent Green’s function,
G���= ��d� ,d��

+ 		, satisfies the Dyson equation which can be
written in matrix form as

�g0
−1 − ��G = I , �11�

where g0���=�����E−�0�−1 is the Green’s function of the dot
in the absence of both electron correlations and coupling to
the leads, while � is the self-energy of the form

� = g0
−1 − �gU

−1 − Uñ�−1gU
−1g0

−1 + �0 �12�

with gU���=�����E−�0−U�−1, ñ��=−n−�, ñ�−�=n−��, and
�0 denoting the self-energy in the absence of Coulomb
correlations. The occupation numbers n���= �d�

+d��	 are
expressed in terms of the lesser Green’s functions as n���
=−�i /2��
dEG���

� .
To find the lesser Green’s function we use the Keldysh

equation, G�=Gr��Ga, with �� determined according
to the Ng ansatz;39 ��=�0

���0
r −�0

a�−1��r−�a�, where �0
�

=−i��LfL+�RfR� and �0
r −�0

a=−i��L+�R�, whereas �r−�a

=−i�ef f, with �ef f calculated from Eq. �12�. The transmis-
sion matrix T�E� is then given by the formula40

T�E� =
1

2
��LGr�̃RGa + �RGr�̃LGa� , �13�

where �̃�=����L+�R�−1�ef f and Gr,a are the retarded and
advanced Green’s functions calculated from the Dyson equa-
tion. When magnetic moments in both electrodes are collin-
ear all matrices are diagonal, and T����E�=����T��E�, with

T��E�=

�

L
�
R


�
L+
�

R i�G��
r −G��

a � being the transmission coefficient
in the spin channel �.

IV. NUMERICAL RESULTS

Let us consider first the case when magnetic moments of
the leads are aligned, i.e., the parallel �P� configuration �	
=0�. The electric conductance G, thermal conductance �,
thermopower S, and figure of merit ZT are shown in Fig. 1 as
a function of temperature T and dot level position �0. The
later can be tuned by external gate voltage, so the depen-
dence on �0 is also referred to in the following as the gate
voltage dependence. The calculations were performed for the
spin polarization of leads corresponding to p=0.2. At rela-
tively low temperatures, kT�0.5
, the linear conductance G
shows two sharp peaks corresponding to resonances when

(b)(a)

(c) (d)

FIG. 1. �a� Linear electrical conductance G, �b� thermal conductance �, �c� thermopower S, and �d� ZT as a function of level position and
temperature, calculated for 
=0.1 meV, U=2 meV, and p=0.2.
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either �0 or �0+U crosses the Fermi level in the leads ��
=0�, see Fig. 1�a�. The Coulomb blockade region between
the peaks is clearly visible. When temperature is increased,
the peaks become wider and of lower intensity, while the
Coulomb blockade effects are less pronounced. This behav-
ior is well known and we show it only for comparison with
the behavior of thermal conductance and thermopower.

The thermal conductance � �Fig. 1�b�
 at low tempera-
tures also reveals two well-defined peaks, which roughly cor-
respond to the peaks in the electrical conductance �Fig. 1�a�
.
These peaks are explicitly shown in Fig. 2�a�, where one of
the curves �for p=0.2� corresponds to the cross-section of
Fig. 1�b� at kT=
=0.1 meV. Two features of the spectra
shown in Fig. 2�a� are worth mentioning. First, the peaks are
slightly wider than the corresponding peaks in electrical con-
ductance. Second, separation between the peaks is larger
than the separation of electrical conductance peaks. Apart
from this, behavior of � with increasing temperature is dif-
ferent from that of G. The thermal conductance significantly
increases with increasing T, and a broad maximum develops
in the middle of the Coulomb blockade regime, which fully
dominates the dependence of � on the gate voltage. A pre-
cursor of this maximum is already seen at low temperatures
in Fig. 2�a� as a very weak maximum in the middle of the
Coulomb gap. The origin of this behavior can be accounted
for as follows. Consider first the low-temperature regime.

When �0 approaches the resonance from above, charge cur-
rent starts to flow and a peak develops in charge conduc-
tance. Electron contribution to heat transfer is then mainly
due to electrons resonantly tunneling through the system and
heat conductance roughly follows the charge conductance.
When �0 decreases further �e.g., due to gate voltage�, the
system goes to deep Coulomb blockade, where charge and
heat conductances are suppressed, and then another reso-
nance is reached when �0=−U. When temperature increases,
the thermal distribution of electrons becomes broader. Owing
to this distribution, tunneling electrons contribute differently
to charge and heat conductances due to a different energy-
dependent “weighting” �energy of a tunneling electron is ir-
relevant for charge current, but is essential for heat transfer�.
When �0 approaches the upper or lower resonance, this
makes the peaks in heat conductance broader than in the
charge conductance. When the system is in the symmetry
point, �0=−U /2, charge current associated with electrons
tunneling from the lead of higher temperature to that of
lower temperature is compensated �in the absence of external
voltage� by charge current associated with holes tunneling in
the opposite directions. In turn, contributions from the holes
and electrons to the heat conductance add then construc-
tively, giving rise to the central peak visible in Fig. 1�b�.

The corresponding behavior of the thermopower S with
temperature and gate voltage �Fig. 1�c�
 is less characteristic.

(c)

(b)(a)

FIG. 2. �Color online� �a� Thermal conductance �, �b� thermopower S, and �c� ZT as a function of the level position for indicated values
of the spin polarization p. The other parameters are: 
=0.1 meV, U=2 meV, and kT=0.1 meV.
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For kT on the order of 
, thermopower S varies rather
sharply in the vicinity of the symmetry point �0=−U /2,
where S changes sign and reaches a sharp maximum on one
side of the symmetry point and a minimum on the other side.
Then S changes sign again when �0 further departs from the
symmetry point. Such a dependence is consistent with other
results obtained for QDs in the Coulomb blockade
regime.15,17,18 This behavior is also clearly shown in Fig.
2�b�, where the curve corresponding to p=0.2 represents a
cross-section of Fig. 1�c� at kT=0.1 meV. As the tempera-
ture is increased, the variation in S with gate voltage be-
comes smooth, and the maxima/minima become flat due to a
relatively flat Fermi-Dirac distribution function.

Behavior of S with decreasing �0 �see Fig. 2�b�
 can be
understood as follows. As �0
0 and decreases approaching
the resonance, electrons tunnel from the lead of higher tem-
perature �left� to the lead of lower temperature �right�, which
gives rise to a voltage drop under the condition of the van-
ishing current. This voltage drop, and consequently the ther-
mopower S, is positive �S in the units of k /e is negative due
to negative electron charge�. When �0 reaches the resonance,
current due electrons tunneling from left to right is compen-
sated by that due to tunneling of holes, and charge current
vanishes at resonance. Accordingly, the thermopower also
vanishes. When �0 is below the resonance, the net electron
flow is then from right to left and S changes sign. The ther-
mopower disappears and changes sign again for �0 in the
middle of the Coulomb blockade regime from the reasons
already discussed above. The situation in the second reso-
nance, �0=−U, is similar to that for the upper one.

Figure of merit ZT is determined by the behavior of trans-
port coefficients discussed above, i.e., of G, �, and S. Ac-
cordingly, three narrow valleys can be seen in the gate volt-
age dependence of ZT �Figs. 1�d� and 2�c�
. These minima,
with vanishing ZT, correspond to the points where S=0, i.e.,
to the resonances �0=0 and −U, and middle of the Coulomb
gap �0=−U /2. This is explicitly shown in Fig. 2�c�, where
the curve for p=0.2 is a cross-section of Fig. 1�d� at kT
=0.1 meV. The three minima as well as the appropriate four
maxima are clearly seen. For 
�kT�2
, magnitude of ZT
is considerably enhanced due to the Coulomb blockade ef-
fect, and one can expect strong thermoelectric efficiency in
this region. The corresponding peaks in ZT are relatively
narrow and high. For higher temperatures, however, the
peaks become suppressed as the influence of Coulomb
blockade on transport properties is then less important. The
thermal conductance � increases then considerably, reducing
the tendency of the system toward thermoelectricity. Thus,
the results clearly indicate on the role of Coulomb correla-
tions in the charge- and heat-transport processes.

Variation in the main thermoelectric parameters, i.e., of
the thermal conductance �, thermopower S, and figure of
merit ZT with the spin polarization of the leads is shown in
Fig. 2 for kT=
. Basic features of the curves were discussed
above. What is interesting to note is their relatively weak
dependence on p, particularly in the case of thermopower S.
Moreover, the thermal conductance increases with increasing
spin polarization of the leads, while the absolute value of the
thermopower S and the parameter ZT decrease with increas-
ing polarization p. The increase in thermal conductance with

increasing p is particularly pronounced at resonances, where
the electrical conductance decreases with increasing p �not
shown�. This can be accounted for by taking into account
that thermal conductance corresponds to the situation with
zero-charge current. Thus, when increasing p one reduces
electrical conductance and this way also the voltage required
to block charge current, which in turn enhances thermal con-
ductance. Behavior of the other parameters with p can be
accounted for in a similar way.

Coulomb and quantum correlations in transport through
nanoscopic systems usually lead to violation of the
Wiedeman-Franz law. In Fig. 3 we show the Lorentz ratio,
defined as L=� /GT, measured in the units of �2k2 /3e2.
Thus, the Lorenz ratio is also determined by the parameters
discussed already above, i.e., G and �. The Lorentz ratio
strongly deviates from unity, indicating violation of the
Wiedeman-Franz law, particularly in the Coulomb blockade
regime. For the symmetry point, �0=−U /2, the ratio L is
considerably enhanced by Coulomb blockade effect, and de-
creases with increasing polarization p. It is worth noting that
this maximum in L corresponds to the central valley in the
figure of merit. However, when �0 departs from �0=−U /2,
the parameter L rapidly decreases. For �0�0 and �0�−U,
the Lorenz ratio L approaches the limit L=1. This is because
transport in this regime is dominated by higher order tunnel-
ing �cotunneling� processes, which are not blocked by the
Coulomb barrier. In the resonance region, the Lorenz ratio is
reduced below the value of L=1, and increases with increas-
ing p. The latter dependence is a consequence of a decrease
in the electrical conductance and increase in thermal conduc-
tance �Fig. 2�a�
 with increasing p, as discussed above.

The results presented up to now were for parallel align-
ment of the leads’ magnetic moments. However, the thermo-
electric properties and the corresponding quantities depend
on relative alignment of the magnetic moments, and this de-
pendence may be quite pronounced when spin polarization
of the leads is large. In an ideal case one could assume per-
fect spin polarization for the leads, like in some half-metallic
ferromagnets �with �p��1�. Therefore, in the following cal-
culations we assumed p=0.95. Variation in the thermal con-

FIG. 3. �Color online� Lorentz ratio as a function of level posi-
tion for indicated values of the spin polarization p. The other pa-
rameters are: 
=0.1 meV, U=2 meV, and kT=0.1 meV.
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ductance � with the angle 	 between magnetic moments and
position of the dot level is shown in Fig. 4�a�. Several cross-
sections of this figure for specific values of the angle 	 are
shown in Fig. 4�b�. The thermal conductance decreases
monotonically with increasing 	 and is relatively low in the
antiparallel �AP� configuration. This behavior resembles that
of electrical conductance �not shown�. In the parallel con-
figuration transport takes place between spin-majority elec-
tron bands in both leads or spin-minority bands in both leads.
The situation changes when the configuration of magnetic
moments is varied from parallel to antiparallel. Then, elec-
trons of both spin-orientations tunnel between spin-majority
and spin-minority bands, and the total conductance �and also
thermal conductance� is suppressed in comparison to that in
the parallel configuration.

Gate voltage dependence of the thermopower S is shown
in Fig. 5�a� for different values of the angle between mag-
netic moments. Now the dependence on the angle 	 is less
pronounced. Since the thermopower depends on relative ori-
entation of the electrodes’ magnetic moments, one can define
magnetothermopower �MTP�, MTP= �S�0�−S���
 /S���,
with S�0� and S��� denoting thermopower in the P and AP
configurations, respectively.35 Gate voltage dependence of
MTP, corresponding to Fig. 5�a�, is presented in Fig. 5�b�.
The magnetothermopower reveals resonancelike nature at
the points �0=0, −U /2, and −U, i.e., at the points where S
vanishes. The angular variation in the magnetothermopower,
defined by the formula MTP�	�= �S�0�−S�	�
 /S�	�, is shown

in Fig. 5�c�. MTP is generally negative, i.e., thermopower
increases when configuration is varied from parallel to anti-
parallel. However, small positive MTP can occur in a certain
range of the angle 	 and level energy �0. We recall that
thermopower vanishes at resonances and also in the middle
of the Coulomb blockade area. Accordingly, the MTP has
singularities at these points, as show in Fig. 5�b�. Thus, when
�0 is close to resonance, both S�0� and S�	� are also small
and a nonmonotonic angular dependence of electron tunnel-
ing may lead to the corresponding nonmonotonic angular
variation in MTP.

The corresponding angular variation in the Lorenz ratio L
and figure of merit ZT is shown in Figs. 6�a� and 6�b�, re-
spectively. This dependence is rather weak, particularly in
the case of the Lorenz ratio, where the most pronounced
dependence on the angle between magnetic moments of the
leads appears in the symmetrical situation, �0=−U /2, where
L is significantly enhanced. The values of ZT also monotoni-
cally increase with increasing 	 and the highest values can be
observed in the antiparallel configuration. Results presented
in Fig. 6�b� confirm the conclusion that Coulomb blockade
effects strongly influence thermoelectric efficiency.

V. SPIN THERMOELECTRIC EFFECTS

When spin accumulation in the external leads becomes
relevant, e.g., due to long spin relaxation time, the voltage
probe can measure chemical potentials at distances from the
interface between the lead and dot, which is smaller than the
spin-diffusion length. In such a case we have to take into
account the spin splitting of the chemical potential in the
leads. This makes the situation more complex and physically
richer than that described above. Therefore, for clarity rea-
sons we assume in this section a collinear magnetic configu-
ration, for which the transmission matrix T�E� is diagonal,
and therefore Ln can be written as Ln=��Ln�. Apart from
this, in addition to the above used charge bias �V one can
introduce spin bias �Vspin according the formula

�V� = �V + �̂�Vspin, �14�

where �V� is given by the difference in chemical potentials
of the two leads in the spin channel �, while �̂= �1 for �
=↑ �upper sign� and �=↓ �lower sign�. From the above fol-
lows that spin bias appears when there is a spin accumula-
tion, while �Vspin=0 in the absence of spin accumulation.

The definition of thermopower in Sec. II was based on the
assumption of vanishing charge current. Since the two spin
channels are independent and the transmission coefficient de-
pends on electron spin, the condition I= I↑+ I↓=0 is then as-
sociated with a nonzero spin current, Ispin= �� /2e��I↑− I↓�
�0. When spin accumulation is present, one can define ther-
mopower calculated on the condition of vanishing simulta-
neously both spin current and charge current, or equivalently
on the condition of vanishing charge current I� in each spin
channel.

Equations �1� and �2� can be then rewritten as

I� = eL0���� +
e

T
L1��T �15�

(b)

(a)
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FIG. 4. �Color online� Thermal conductance � �a� as a function
of the level position �0 and angle 	 and �b� as a function of �0 for
indicated values of 	. The other parameters are: p=0.95, 

=0.1 meV, U=2 meV, and kT=0.1 meV.
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for charge current in the spin channel �, and

IQ = − �
�

�L1���� +
1

T
L2��T� �16�

for the heat current.
The spin and charge currents can be written as41

I = G�V + Gm�Vspin, �17�

Ispin = Gspin�V + Gspin
m �Vspin �

�

2e
�Gm�V + G�Vspin� �18�

with

(b)

(a)

(c)

FIG. 5. �Color online� �a� Thermopower for indicated values of 	 and �b� magnetothermopower as a function of the level position. MTP
�	� for indicated values of �0 �c�. The other parameters are: p=0.95, 
=0.1 meV, U=2 meV, and kT=0.1 meV.

(b)(a)

FIG. 6. �Color online� �a� Lorentz ratio and �b� ZT as a function of the level position for indicated values of 	. �he other parameters are:
p=0.95, 
=0.1 meV, U=2 meV, and kT=0.1 meV.
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G = G↑ + G↓ = e2�L0↑ + L0↓� , �19�

Gm = e2�L0↑ − L0↓� . �20�

In turn, the heat conductance is given by

� = �
�

�� = �
�

1

T
�L2� −

L1�
2

L0�
� . �21�

It is thus reasonable to introduce the spin-dependent ther-
mopower,

S� = �V�/�T = − L1�/eTL0�, �22�

determined on the condition that electric current in the chan-
nel � is equal to zero, I�=0. Accordingly, �V� corresponds
to the spin-dependent thermoelectric voltage, which can be
rewritten in the form of Eq. �14�, with �V= ��V↑+�V↓� /2
denoting the thermally induced charge voltage, and �Vspin
= ��V↑−�V↓� /2 being the corresponding spin voltage. Fol-
lowing this, one can introduce spin thermopower Sspin in
addition to the charge thermopower S,

Sspin =
�Vspin

�T
=

1

2
�S↑ − S↓� = −

1

2eT
�L1↑

L0↑
−

L1↓
L0↓

� , �23�

S =
�V

�T
=

1

2
�S↑ + S↓� = −

1

2eT
�L1↑

L0↑
+

L1↓
L0↓

� . �24�

Spin-dependent thermopower S� is presented in Fig. 7�a�,
where we also show the thermopower S and spin ther-
mopower Sspin. In general, the curves representing S↑ and S↓,
as well as S, are similar to the ones found from the condition
I=0. The spin thermopower, in turn, strongly varies with the
spin polarization of electrodes and increases with p, as illus-
trated in Fig. 7�b�. Moreover, the sign of spin thermopower is
opposite to the sign of charge thermopower as voltage in-
duced in the channel corresponding to minority spins is
higher. It is worth noting that both charge and spin ther-
mopower disappear at resonances as well as in the middle of
the Coulomb gap. Note, that we assumed the temperature
drop independent of spin. In a more general situation, how-

ever, the spin-dependent temperature can be included as
well.

Figure of merit ZT, defined by the formula �7� and calcu-
lated in the situation when currents in both spin channels are
equal to zero, is presented in Fig. 8�a�. Now, the magnitude
of ZT increases with p in the Coulomb blockade region, and
the valley between the two main peaks becomes narrower for
higher p. This corresponds to the strong increase in ther-
mopower efficiency in the minority spin channel. We also
note, that one can introduce a spin analog of the figure of
merit ZT given by Eq. �7�, i.e.,

ZspinT =
�2e/��GspinSspin

2 T

�
, �25�

where Gspin is defined in Eq. �18�, while � and Sspin are given
by Eqs. �21� and �23�, respectively. Variation in ZspinT with
the level position is shown in Fig. 8�b�.

VI. NONLINEAR THERMOPOWER

Assume now the situation when the temperature differ-
ence between the two leads is large enough, so the linear
description ceases to be valid. Consider first the case of van-
ishing spin accumulation �zero spin voltage�. Differential
thermopower, defined as Sdif f =dV /dT, is presented in Fig.
9�a� for p=0.9 and parallel configuration of magnetic mo-
ments. Temperature of the right electrode is assumed con-
stant, kTR=
, while temperature of the left electrode is
higher by k�TL. The voltage V between two electrodes is
generated by the temperature difference under the condition
of vanishing charge current, I=0. In nonlinear situation the
current is calculated according to the formula given by
Meir:42 I= e

h��
dET��E��fL�E�− fR�E�
 with fL�R� denoting
the Fermi-Dirac distribution function in the left �right� elec-
trode. For the chosen energy level, �0=−1.65 meV, Sdif f is
negative and changes in a monotonic way; its absolute mag-
nitude decreases with increasing �TL and is practically equal
to zero for k�TL
5
. This result is consistent with the one
presented in Fig. 1 for the linear response regime, as the
thermoelectric efficiency is low at higher temperatures due to
weak influence of Coulomb blockade.

(b)(a)

FIG. 7. �Color online� Thermopower as a function of level position calculated under the condition of I�=0 for indicated spin polarization
of the leads. The other parameters are: 
=0.1 meV, U=2 meV, and kT=0.1 meV.
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When spin accumulation is relevant, to compensate the
current in each spin channel one has to apply spin-dependent
voltage �spin and charge biases�. The corresponding spin-
dependent differential thermopower, defined as Sdif f

�

=dV� /dT, is presented in Fig. 9�b� for both spin channels
and for p=0.9. Functional dependence of Sdif f

� is similar to
Sdif f, but at small values of k�TL the thermopower strongly
depends on the spin orientation and reaches the largest abso-
lute values for minority spins. Spin and charge thermopower,
defined as Sdif f = �1 /2��Sdif f

↑ +Sdif f
↓ �=dV /dT and Sdif f

spin

= �1 /2��Sdif f
↑ −Sdif f

↓ �=dVspin /dT are also shown there.

VII. SUMMARY AND DISCUSSION

We have considered thermoelectric coefficients in the
Coulomb blockade regime for a QD attached to ferromag-
netic electrodes. The considerations reveal a significant role
of the blockade effect in charge and heat transport processes,

which manifests in a substantial increase in thermoelectric
efficiency described quantitatively by the dimensionless fig-
ure of merit. For gate voltages corresponding to the Coulomb
blockade region, ZT shows two peaks with intensities
strongly dependent on temperature, leads’ polarization p, and
magnetic configuration of the system. The blockade effects
become less significant with increasing temperature, so the
intensities of peaks in ZT are lower. Magnitude of ZT also
diminishes in systems with strongly polarized electrodes and
for parallel configuration of the system, as the Coulomb
blockade is partially reduced in majority spin channel due to
strong coupling with the leads. When configuration of mag-
netic moments is varied from parallel to antiparallel, the
Coulomb blockade effects become important for both spin
channels which leads to gradual increase in ZT. At a given
temperature, the peaks in ZT achieve maximal intensities
when both spin channels are fully equivalent, which takes
place for antiparallel configuration in symmetric system or
for nonmagnetic case. In such a situation the charge current

(b)(a)

FIG. 8. �Color online� �a� Figure of merit ZT and �b� ZspinT as a function of level position calculated under the condition of I�=0 for
indicated values of p. The other parameters are: 
=0.1 meV, U=2 meV, and kT=0.1 meV.

(b)(a)

FIG. 9. �Color online� Differential thermopower �a� in the absence of spin accumulation and �b� with spin accumulation as a function of
temperature difference for indicated level position and polarization p, calculated for the condition of �a� vanishing charge current and �b� spin
and charge currents, 
=0.1 meV, U=2 meV, and kTR=0.1 meV.
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I= I↑+ I↓ as well as the spin current Is= �� /2e��I↑− I↓� vanish
simultaneously.

The spin Seebeck effect has been observed recently by
Uchida et al.31 in a ferromagnetic transition-metal slab. One
also may expect that similar effects can be observable in spin
valves based on quantum dots, like those discussed in this
manuscript, particularly when half-metallic ferromagnets
will be used. Moreover, the experiment may turn out much

simpler when the concept of spin battery will be realized
practically.
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